Skip to content

cp_hw2

复制本地路径 | 在线编辑

原始文件为 .py 代码,本文是转换后的 Markdown 文件。

```.py

!/usr/bin/python

""" This is a module for hdr imaging homework (15-463/663/862, Computational Photography, Fall 2020, CMU).

You can import necessary functions into your code as follows:
from cp_hw2 import lRGB2XYZ, XYZ2lRGB, writeEXR, read_colorchecker_gm

Depends on OpenCV to read/write HDR files"""

import numpy as np
import cv2

def read_colorchecker_gm():
"""Returns a 4x6 matrix with sRGB linear values of the Greatg-Macbeth color checker

function uses L*a*b* data under D50 illumination published by Gretag-Macbeth in 2005 
(according to http://www.babelcolor.com/main_level/ColorChecker.htm)
data obtained from  
Danny Pascale: "RGB coordinates of the Macbeth ColorChecker", page 6
(available from same webpage)
the function performs chromatic adaptation from D50 to D65 (sRGB standard illum.) and a conversion from L*a*b* to linear sRGB values

 (c) 200x - 2011; x in {9,10}, Ivo Ihrke
 Universitaet des Saarlandes / MPI Informatik

L a* b* data CIE D50 illumination for the Gretag Macbeth color checker
"""

L = [ \
 37.986, \
 65.711, \
 49.927, \
 43.139, \
 55.112, \
 70.719, \
 62.661, \
 40.020, \
 51.124, \
 30.325, \
 72.532, \
 71.941, \
 28.778, \
 55.261, \
 42.101, \
 81.733, \
 51.935, \
 51.038, \
 96.539, \
 81.257, \
 66.766, \
 50.867, \
 35.656, \
 20.461 ]


a = [ \
 13.555, \
 18.130, \
 -4.880, \
-13.095, \
  8.844, \
-33.397, \
 36.067, \
 10.410, \
 48.239, \
 22.976, \
-23.709, \
 19.363, \
 14.179, \
-38.342, \
 53.378, \
  4.039, \
 49.986, \
-28.631, \
 -0.425, \
 -0.638, \
 -0.734, \
 -0.153, \
 -0.421, \
 -0.079  ]


b = [ \
 14.059, \
 17.810, \
-21.925, \
 21.905, \
-25.399, \
 -0.199, \
 57.096, \
-45.964, \
 16.248, \
-21.587, \
 57.255, \
 67.857, \
-50.297, \
 31.370, \
 28.190, \
 79.819, \
-14.574, \
-28.638, \
  1.186, \
 -0.335, \
 -0.504, \
 -0.270, \
 -1.231, \
 -0.973  ]

L = np.reshape(L, (4, 6))
a = np.reshape(a, (4, 6))
b = np.reshape(b, (4, 6))

Lab = np.zeros((4, 6, 3))
Lab[:, :, 0] =  L
Lab[:, :, 1] =  a
Lab[:, :, 2] =  b

# 先转换到 XYZ,其中要注意色卡上的 LAB 值把 D50 作为参考白点
XYZ = Lab_to_XYZ(Lab, 'D50')

# 计算 XYZ 到 RGB 的转换矩阵,不同色彩空间有不同的转换矩阵,以及不同的参考白点!
[ M_XYZ_to_RGB, illuminant ] = XYZ_to_RGB_linear( 'sRGB' )

# 上一步说了不同颜色空间有不同矩阵有不同参考白点,而色卡是 D50 参考白点,所以要把 XYZ 值转换一下
M = chromatic_adaptation_xyz ( 'D50', illuminant, 'Bradford' )
XYZ = apply_color_matrix( XYZ, M )

# 最后一步就是直接用上面算出的矩阵去求 RGB 值
RGB = apply_color_matrix( XYZ, M_XYZ_to_RGB ) # we want linear RGB values for our HDR measurements

r = RGB[:, :, 0]
g = RGB[:, :, 1]
b = RGB[:, :, 2]

rgb = np.vstack((r.flatten(), g.flatten(), b.flatten())).T

return rgb, Lab.reshape(-1, 3)

def Lab_to_XYZ(Lab, illuminant='D65'):
"""© Ivo Ihrke 2011
Universitaet des Saarlandes / MPI Informatik

convert from L*a*b* (CIELAB) to XYZ color space 
using one of the CIE standard illuminants

source:                                                                                                                                                                  
http://en.wikipedia.org/wiki/Lab_color_space#CIE_XYZ_to_CIE_L.2Aa.2Ab.2A_.28CIELAB.29_and_CIELAB_to_CIE_XYZ_conversions
2011-01-06

see also:

illuminant_xyz
"""
def finv(val):
    val_out = np.where(val > 6/29, val**3, 3 * (6/29)**2 * ( val - 4/29 ))
    return val_out

Xn, Yn, Zn = illuminant_xyz(illuminant)

L = Lab[:, :, 0]
a = Lab[:, :, 1]
b = Lab[:, :, 2]

XYZ = np.zeros_like(Lab)
XYZ[:, :, 0] = Xn * finv( 1/116 * ( L + 16 ) + 1/500 * a )
XYZ[:, :, 1] = Yn * finv( 1/116 * ( L + 16 ) )
XYZ[:, :, 2] = Zn * finv( 1/116 * ( L + 16 ) - 1/200 * b )

return XYZ

def illuminant_xyz(illuminant_in):
"""© Ivo Ihrke 2011
Universitaet des Saarlandes / MPI Informatik

define xyz coordinates of CIE standard illuminants
1931 and 1964

data from

http://en.wikipedia.org/wiki/Standard_illuminant



Name    CIE 1931 2°    CIE 1964 10° CCT (*) in K    Hue Note
    x2       y2     x10     y10
A   0.44757, 0.40745, 0.45117, 0.40594, 2856            Incandescent / Tungsten
B   0.34842, 0.35161, 0.34980, 0.35270, 4874            {obsolete} Direct sunlightat noon
C   0.31006, 0.31616, 0.31039, 0.31905, 6774            {obsolete} Average / North sky Daylight
D50 0.34567, 0.35850, 0.34773, 0.35952, 5003            Horizon Light. ICC profile PCS
D55 0.33242, 0.34743, 0.33411, 0.34877, 5503            Mid-morning / Mid-afternoon Daylight
D65 0.31271, 0.32902, 0.31382, 0.33100, 6504            Noon Daylight: Television, sRGB color space
D75 0.29902, 0.31485, 0.29968, 0.31740, 7504            North sky Daylight
E   1/3    , 1/3    , 1/3    , 1/3    , 5454            Equal energy
F1  0.31310, 0.33727, 0.31811, 0.33559, 6430            Daylight Fluorescent
F2  0.37208, 0.37529, 0.37925, 0.36733, 4230            Cool White Fluorescent
F3  0.40910, 0.39430, 0.41761, 0.38324, 3450            White Fluorescent
F4  0.44018, 0.40329, 0.44920, 0.39074, 2940            Warm White Fluorescent
F5  0.31379, 0.34531, 0.31975, 0.34246, 6350            Daylight Fluorescent
F6  0.37790, 0.38835, 0.38660, 0.37847, 4150            Lite White Fluorescent
F7  0.31292, 0.32933, 0.31569, 0.32960, 6500            D65 simulator, Daylight simulator
F8  0.34588, 0.35875, 0.34902, 0.35939, 5000            D50 simulator, Sylvania F40 Design 50
F9  0.37417, 0.37281, 0.37829, 0.37045, 4150            Cool White Deluxe Fluorescent
F10 0.34609, 0.35986, 0.35090, 0.35444, 5000            Philips TL85, Ultralume 50
F11 0.38052, 0.37713, 0.38541, 0.37123, 4000            Philips TL84, Ultralume 40
F12 0.43695, 0.40441, 0.44256, 0.39717, 3000            Philips TL83, Ultralume 30

(*) CCT= correlated color temperature


standard is the 1931 definition

illuinant_in = 'A','B','C', 'D50','D55','D65','D75' etc.

for 1964 version use

illuinant_in = 'A_64','B_64','C_64', 'D50_64','D55_64','D65_64','D75_64' etc.


verification performed by checking

http://brucelindbloom.com/index.html?Eqn_ChromAdapt.html

"""


ind1931 = np.arange(0, 2)
ind1964 = np.arange(2, 4)

illuminants = [ 'A', 'B', 'C', 'D50', 'D55','D65','D75','E','F1', \
                'F2','F3','F4','F5','F6','F7','F8','F9','F10','F11','F11']


xy = np.array([[0.44757, 0.40745, 0.45117, 0.40594], \
      [0.34842, 0.35161, 0.34980, 0.35270], \
      [0.31006, 0.31616, 0.31039, 0.31905], \
      [0.34567, 0.35850, 0.34773, 0.35952], \
      [0.33242, 0.34743, 0.33411, 0.34877], \
      [0.31271, 0.32902, 0.31382, 0.33100], \
      [0.29902, 0.31485, 0.29968, 0.31740], \
      [1/3    , 1/3    , 1/3    , 1/3    ], \
      [0.31310, 0.33727, 0.31811, 0.33559], \
      [0.37208, 0.37529, 0.37925, 0.36733], \
      [0.40910, 0.39430, 0.41761, 0.38324], \
      [0.44018, 0.40329, 0.44920, 0.39074], \
      [0.31379, 0.34531, 0.31975, 0.34246], \
      [0.37790, 0.38835, 0.38660, 0.37847], \
      [0.31292, 0.32933, 0.31569, 0.32960], \
      [0.34588, 0.35875, 0.34902, 0.35939], \
      [0.37417, 0.37281, 0.37829, 0.37045], \
      [0.34609, 0.35986, 0.35090, 0.35444], \
      [0.38052, 0.37713, 0.38541, 0.37123], \
      [0.43695, 0.40441, 0.44256, 0.39717]])

for i in range(len(illuminants)):
    if illuminants[i] == illuminant_in:
        index_row = i
        index_cols = ind1931

        if len(illuminant_in) > 3:
            if illuminant_in[-3:] == '_64':
                index_cols = ind1964


        data = xy[index_row, index_cols]

        X, Y, Z = xyY_to_XYZ(data[0], data[1], 1)

return X, Y, Z

def xyY_to_XYZ(x, y, Y):
"""© Ivo Ihrke 2011
Universitaet des Saarlandes / MPI Informatik
"""

Xo = Y * x / y
Yo = Y
Zo = Y * ( 1 - x - y ) / y
return Xo, Yo, Zo

def chromatic_adaptation_xyz(from_illum, to_illum, method='Bradford'):

"""
(c) Ivo Ihrke 2011
    Universitaet des Saarlandes / MPI Informatik

computes chromatic adaptation matrix for XYZ space
chromatic adaptation

input: illuminant names (from, to) and method

       method = 'XYZScaling', 'Bradford', 'vonKries'

       default 'Bradford'

implementation and choice of default according to

http://brucelindbloom.com/index.html?Eqn_ChromAdapt.html

the conversion matrices given on this webpage seem to  
use the 'XYZScaling' method which is mentioned as the
worst choice.
"""

fX, fY, fZ = illuminant_xyz( from_illum )

tX, tY, tZ = illuminant_xyz( to_illum )


# setup Ma (cone response domain transform) according to <method>

mselected = 0

if method == 'XYZScaling':
    Ma = np.eye(3)
    mselected = 1

if method == 'Bradford':
    Ma = np.array([ [0.8951000,  0.2664000, -0.1614000], \
                    [-0.7502000,  1.7135000, 0.0367000], \
                    [0.0389000, -0.0685000,  1.0296000] ])
    mselected = 1


if method == 'vonKries':
    Ma = np.array([ [0.4002400,  0.7076000, -0.0808100], \
                    [-0.2263000,  1.1653200, 0.0457000], \
                    [0.0000000,  0.0000000,  0.91822000]])
    mselected = 1

if not mselected:
    # print('chromatic_adaptation_xyz: unknown transform - returning unit matrix');
    M = np.eye(3)
else:
    # compute transform matrix

    # rho, gamma, beta
    from_rgb = Ma @ np.array((fX, fY, fZ))

    to_rgb = Ma @ np.array((tX, tY, tZ))

    M = np.linalg.inv(Ma) @ np.diag(to_rgb / from_rgb) @ Ma

return M

def XYZ_to_RGB_linear(rgb_space='sRGB'):
""" Data from

http://brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html

Name             Gamma   Reference White   Red Primary            Green Primary          Blue Primary        Volume (deltaE^3)         Lab Gamut Efficiency  Coding Efficiency
                                          x      y      Y        x      y      Y        x      y      Y
Lab Gamut          -         D50           -      -      -        -      -      -        -      -      -        2,381,085                   97.0              35.1
Adobe RGB (1998) 2.2         D65           0.6400 0.3300 0.297361 0.2100 0.7100 0.627355 0.1500 0.0600 0.075285 1,208,631                   50.6             100.0
Apple RGB        1.8         D65           0.6250 0.3400 0.244634 0.2800 0.5950 0.672034 0.1550 0.0700 0.083332   798,403                   33.5             100.0
Best RGB         2.2         D50           0.7347 0.2653 0.228457 0.2150 0.7750 0.737352 0.1300 0.0350 0.034191 2,050,725                   77.6              96.5
Beta RGB         2.2         D50           0.6888 0.3112 0.303273 0.1986 0.7551 0.663786 0.1265 0.0352 0.032941 1,717,450                   69.3              99.0
Bruce RGB        2.2         D65           0.6400 0.3300 0.240995 0.2800 0.6500 0.683554 0.1500 0.0600 0.075452   988,939                   41.5             100.0
CIE RGB          2.2         E             0.7350 0.2650 0.176204 0.2740 0.7170 0.812985 0.1670 0.0090 0.010811 1,725,261                   64.3              96.1
ColorMatch RGB   1.8         D50           0.6300 0.3400 0.274884 0.2950 0.6050 0.658132 0.1500 0.0750 0.066985   836,975                   35.2             100.0
Don RGB 4        2.2         D50           0.6960 0.3000 0.278350 0.2150 0.7650 0.687970 0.1300 0.0350 0.033680 1,802,358                   72.1              98.8
ECI RGB v2        L*         D50           0.6700 0.3300 0.320250 0.2100 0.7100 0.602071 0.1400 0.0800 0.077679 1,331,362                   55.3              99.7
Ekta Space PS5   2.2         D50           0.6950 0.3050 0.260629 0.2600 0.7000 0.734946 0.1100 0.0050 0.004425 1,623,899                   65.7              99.5
NTSC RGB         2.2         C             0.6700 0.3300 0.298839 0.2100 0.7100 0.586811 0.1400 0.0800 0.114350 1,300,252                   54.2              99.9
PAL/SECAM RGB    2.2         D65           0.6400 0.3300 0.222021 0.2900 0.6000 0.706645 0.1500 0.0600 0.071334   849,831                   35.7             100.0
ProPhoto RGB     1.8         D50           0.7347 0.2653 0.288040 0.1596 0.8404 0.711874 0.0366 0.0001 0.000086 2,879,568                   91.2              87.3
SMPTE-C RGB      2.2         D65           0.6300 0.3400 0.212395 0.3100 0.5950 0.701049 0.1550 0.0700 0.086556   758,857                   31.9             100.0
sRGB            #2.2         D65           0.6400 0.3300 0.212656 0.3000 0.6000 0.715158 0.1500 0.0600 0.072186   832,870                   35.0             100.0
Wide Gamut RGB   2.2         D50           0.7350 0.2650 0.258187 0.1150 0.8260 0.724938 0.1570 0.0180 0.016875 2,164,221                   77.6              91.9


#2.2 - actual transform is more complex (see http://brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html )

deltaE^3 is the volume of the gamut in Lab space
Coding efficiency is the amount of the gamut inside the horseshoe diagram

implementation verified with Bruce Lindbloom's data
"""

color_spaces = [ 'Adobe RGB (1998)', 'Apple RGB', 'Best RGB', 'Beta RGB', 'Bruce RGB','CIE RGB', \
                 'ColorMatch RGB','Don RGB 4','ECI RGB v2','Ekta Space PS5','NTSC RGB','PAL/SECAM RGB','ProPhoto RGB','SMPTE-C RGB','sRGB','Wide Gamut RGB']


reference_whites = [ 'D65', 'D65','D50','D50','D65','E','D50','D50','D50','D50','C','D65','D50','D65','D65','D50' ]

xyY_red = np.array([[ 0.6400, 0.3300, 0.297361], \
                     [0.6250, 0.3400, 0.244634], \
                     [0.7347, 0.2653, 0.228457], \
                     [0.6888, 0.3112, 0.303273], \
                     [0.6400, 0.3300, 0.240995], \
                     [0.7350, 0.2650, 0.176204], \
                     [0.6300, 0.3400, 0.274884], \
                     [0.6960, 0.3000, 0.278350], \
                     [0.6700, 0.3300, 0.320250], \
                     [0.6950, 0.3050, 0.260629], \
                     [0.6700, 0.3300, 0.298839], \
                     [0.6400, 0.3300, 0.222021], \
                     [0.7347, 0.2653, 0.288040], \
                     [0.6300, 0.3400, 0.212395], \
                     [0.6400, 0.3300, 0.212656], \
                     [0.7350, 0.2650, 0.258187]])

xyY_green = np.array([[0.2100, 0.7100, 0.627355], \
                      [0.2800, 0.5950, 0.672034], \
                      [0.2150, 0.7750, 0.737352], \
                      [0.1986, 0.7551, 0.663786], \
                      [0.2800, 0.6500, 0.683554], \
                      [0.2740, 0.7170, 0.812985], \
                      [0.2950, 0.6050, 0.658132], \
                      [0.2150, 0.7650, 0.687970], \
                      [0.2100, 0.7100, 0.602071], \
                      [0.2600, 0.7000, 0.734946], \
                      [0.2100, 0.7100, 0.586811], \
                      [0.2900, 0.6000, 0.706645], \
                      [0.1596, 0.8404, 0.711874], \
                      [0.3100, 0.5950, 0.701049], \
                      [0.3000, 0.6000, 0.715158], \
                      [0.1150, 0.8260, 0.724938]])

xyY_blue = np.array([[0.1500, 0.0600, 0.075285], \
                     [0.1550, 0.0700, 0.083332], \
                     [0.1300, 0.0350, 0.034191], \
                     [0.1265, 0.0352, 0.032941], \
                     [0.1500, 0.0600, 0.075452], \
                     [0.1670, 0.0090, 0.010811], \
                     [0.1500, 0.0750, 0.066985], \
                     [0.1300, 0.0350, 0.033680], \
                     [0.1400, 0.0800, 0.077679], \
                     [0.1100, 0.0050, 0.004425], \
                     [0.1400, 0.0800, 0.114350], \
                     [0.1500, 0.0600, 0.071334], \
                     [0.0366, 0.0001, 0.000086], \
                     [0.1550, 0.0700, 0.086556], \
                     [0.1500, 0.0600, 0.072186], \
                     [0.1570, 0.0180, 0.016875 ]])


for i in range(len(color_spaces)):
    if color_spaces[i] == rgb_space:            
        index_row = i

Xr, Yr, Zr = xyY_to_XYZ( xyY_red[index_row, 0], xyY_red[index_row, 1], xyY_red[index_row, 2] )
Xg, Yg, Zg = xyY_to_XYZ( xyY_green[index_row, 0], xyY_green[index_row, 1], xyY_green[index_row, 2] )
Xb, Yb, Zb = xyY_to_XYZ( xyY_blue[index_row, 0], xyY_blue[index_row, 1], xyY_blue[index_row, 2] )

illuminant = reference_whites[index_row]

Xw, Yw, Zw = illuminant_xyz(illuminant)

S = np.linalg.inv( np.array([[Xr, Xg, Xb], [Yr, Yg, Yb], [Zr, Zg, Zb]]) ) @ np.array([Xw, Yw, Zw])

# this matrix is RGB to XYZ
M = np.array([ [S[0]*Xr, S[1]*Xg, S[2]*Xb], [S[0]*Yr, S[1]*Yg, S[2]*Yb], [S[0]*Zr, S[1]*Zg, S[2]*Zb]])

M = np.linalg.inv(M)

return M, illuminant

def apply_color_matrix(I, matrix):
""" Applies a 3x3 color matrix to a 3-channel image I

(c) 2011 Ivo Ihrke
Universitaet des Saarlandes 
MPI Informatik
"""

vec = np.reshape(I, (I.shape[0]*I.shape[1], 3))
out_vec = matrix @ vec.T
out = np.reshape(out_vec.T, (I.shape[0], I.shape[1], 3))
return out

def lRGB2XYZ(lRGB):
""" linear RGB to XYZ
"""
invM = XYZ_to_RGB_linear('sRGB')[0]
M = np.linalg.inv(invM)

# linear rgb
R = lRGB[:,:,0]
G = lRGB[:,:,1]
B = lRGB[:,:,2]

# through matrix to XYZ
X = M[0,0] * R + M[0,1] * G + M[0,2] * B
Y = M[1,0] * R + M[1,1] * G + M[1,2] * B
Z = M[2,0] * R + M[2,1] * G + M[2,2] * B

XYZ = np.dstack((X, Y, Z))
return XYZ

def XYZ2lRGB(XYZ):
""" XYZ to linear RGB
"""

invM = XYZ_to_RGB_linear('sRGB')[0]

# XYZ
X = XYZ[:,:,0]
Y = XYZ[:,:,1]
Z = XYZ[:,:,2]

# through matrix to lRGB
R = invM[0,0] * X + invM[0,1] * Y + invM[0,2] * Z
G = invM[1,0] * X + invM[1,1] * Y + invM[1,2] * Z
B = invM[2,0] * X + invM[2,1] * Y + invM[2,2] * Z

RGB = np.dstack((R, G, B))
return RGB

def writeHDR(name, data):
#flip from rgb to bgr for cv2
cv2.imwrite(name, data[:, :, ::-1].astype(np.float32))

def readHDR(name):
raw_in = cv2.imread(name, flags=cv2.IMREAD_ANYDEPTH)
#flip from bgr to rgb
return raw_in[:, :, ::-1]```

Comments