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Understanding the in-camera rendering pipeline
& the role of Al and deep learning

Michael S. Brown

Professor and Canada Research Chair
York University — Toronto

Senior Research Director
Samsung Al Center —Toronto

https://www.eecs.yorku.ca/~mbrown/ICCV2023 Brown.html
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Learning to See in the Dark

Chen Chen Qifeng Chen Jia Xu Vladlen Koltun
UIUC Intel Labs Intel Labs Intel Labs

(a) Camera output with ISO 8,000 (b) Camera output with ISO 409,600 (c) Our result from the raw data of (a)
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Practical Deep Raw Image Denoising
on Mobile Devices

Yuzhi Wang!?, Haibin Huang?, Qin Xu?, Jiaming Liu?, Yiqun Liu', and Jue
Wang?

! Tsinghua University
2 Megvii Technology

https://www.ecva.net/papers/eccv 2020/papers ECCV/papers/123510001.pdf
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A simple noise reduction approach

* Blur the image based on the ISO setting (higher ISO = more blur)
* Blurring will reduce noise, but also remove detail.

* Add image detail back for regions that have a high signal. We can even
boost some parts of the signal to enhance detail (i.e. "sharpening")

Sketch of the procedure here

- NR+Sh d
input 1 |=—| By | —— [ o™ [ ——— | output arpene
bine Output
blur input
reduces noise

Values with high-response, we may assume are image
but blurs edges “ " 8 P . 4 . &
content” and not noise. VWe can add this response
l back to the image (or even boast it).

—> (-)=>|-B()| >T

Low response areas we don't add back, but
Subtract I-B keep the blurred (noised reduced) result.
(high pass filter)

Noise
Reduction

Michael S. Brown 2023
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Non-deep-learning noise reduction

* One of the best-performing methods was based on non-local means (2007).
* Block-matching with 3D filtering [BM3D]
* |t is slow, but works well.

Dabov et al TIP'07

Image denoising by sparse 3D transform-domain
collaborative filtering

Kostadin Dabov, Alessandro Foi, Viadimir Katkovnik, and Karen Egiazarian, Semior Member, IEEE

For small reference patch R, find similar patches.
Average the patches.

TTERNENEGRER, EEK EFRAMEBRIRES K
SDEEER, AXA3DEUEIR EH TR BRIERBRIRE

Michael S. Brown 2023
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DNN for denoising (DnDNN)

Zhang eta. TIP'l7

Beyond a Gaussian Denoiser: Residual Learning of
Deep CNN for Image Denoising

Kai Zhang, Wangmeng Zuo. Yunjin Chen, Deyu Meng. and Lei Zhang

Abstract—Discriminative model learning for image denobsing

the progress In very decp ithm, wod
e method into image
narsing and hatch sermaltadon are wsend s spesd up e

training proces as well as hoost the demsising performance.

0 wpecitic misdel for additive white Gawsian noise
um.m-.mu.-—-hn.-.m“—-.n.—e
to handle with unknown noise Jevel (Le.,
vy ey With the residusl bearming sirategy,
DRCNN lnplicitly removes the latent clean lmage b the hidden
oy, The priparty melhke % 1tk o dogo DUCION
madel 1o tackle with several gemeral image tasks wuch

limage denoising 1
by benefiting from GPU

Index Torms—Image Demoising, Convobutional Newrsl Net-
works, Residual Learning. Batch Normalization

1. INTRODUCTION

Image denolsing is a classical yet stil active topic in low
level vision since it is an indispensable sicp in many practical
applications. The goal of image dencising is 10 recover a clean
image X from a noisy observation y which follows an image
degradation model y = X + v. One common assamption ix
shat v is shitc Gayssian poisc (AWGN) with standard

random field (MRF) models 1}, [111. [/}, In panticular, the
NSS modcls are popular in staic-of-the-ant methods such as
BM3D [ /], LSSC [ ). NCSR [ ] and WNNM [/ ]

Despite theie high denoising quality, most of the image
prioe-based methods typically suffer from two major draw
hacks. First, those methods gencrally involve & complex. op-
timization problem in the tesing stage, making the denoising
process time-consuming (], [ /] Thas, most of the prior
hascd methods can hardly achieve high performance without
sacrificing computational effciency. Second, the models in
pencral are noo-convex and imvolve several manually chosen
parameters. providing some leeway 10 boost denoising perfor

mance.
To overcome the limitations of prioe-based approaches,
several discriminative learning methods have been receatly
developed 10 leam image prior models in the comtext of
truncated inference procedure. The resulting models are able o
gt rid of the inerative optimization procedure in the test phase.
Schmidt and Roth | 1] proposed a cascade of shrinkage fiekis
(CSF) method that unifics the random feld-based model and
the unrolled half-quadeatic optimization algorithm ino a single
leaming framework. Chen et al. |1 ], [ ] proposed a rainsble
nonlincar reaction diffusion (TNRD) maodel which learms a
modified fickds of experts | | image prior
e of gradion descen nerace hepn.
reluted work can be found in | ]/
TNRD have shown peomising results m...q bridging the gap
between computational efficiency and denoising quality. their
performance are inhereatly restricied 10 the specified forms of

Michael S. Brown 2023

Noisy Image

Residual Image

v
Conv +RelU
Conv + BN + RelU
\
Conv + BN + RelU
Conv + BN + RelU
v

- Straight-forward network based on deep residual learning
(Kim SR-ResNet).

- Introduced batch normalization to the network.

- Predicts the residual noise layer.

531

FREGMNEMERZ BHNTRE—REZRRE

12
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DnCNN result

Methods | BM3D WNNM EPLL MLP CSF TNRD DnCNN-S DnCNN-B
=156 31.07 3137 31.21 - 31.24 31.42 31.73 31.61
o=25 28.57 28.83 28.68 28.96 | 28.74 28.92 29.23 29.16
o =50 25.62 25.87 25.67 26.03 - 25.97 26.23 26.23

- Method trained on synthetic noise data.

- Beats BM3D and is much faster. BM3D DnCNN

- BM3D does not require training data!

Michael S. Brown 2023

13
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Need for real denoising dataset

Abdelhamed et al CVPR 2018

A High-Quality Denoising Dataset for Smartphone Cameras

Abdelrahman Abdelhamed
York University

Abstract

The last decade has seen an astronomical shift from
imaging with DSLR and point-and-shoot cameras 10 imag-
ing with smartphone cameras. Due 1o the small aperture
and sensor size, smariphone images have notably more
noise than their DSLR counterparts. While denoising for
smartphone images is an active research area. the research
community currently lacks a denoising image dataset rep-
resentative of real noisy images from smartphone cameras
with high-quality ground truth. We address this issue in
this paper with the following contributions. We propose a
systematic procedure for estimating ground truth for noisy
images that can be used 1o benchmark denoising perfor
mance for smartphone cameras. Using this procedure, we
have captured a dataset - the Smaniphone Image Denoising
Dataset (SIDD) 30,000 noisy images from 10
wnder different lighting
smartphone cameras and generated their ground truth im

ages. We used this dataset to benchmark a number of de.
noising algorithms. We show that CNN-based methods per

form better when trained on our high-quality dataset than

when trained using alternative strategies, such as low-1S0
images used as a proxy for ground truth data.

Michael S. Brown 2023

Stephen Lin
Microsoft Research

Michael S. Brown
York University

(b) Low-1SO image (15O 100)

(€) Ground truth using ||

Figure 1: An example scene imaged with an LG G4 smant-
phone camera: (a) a high-1SO noisy image; (b) same scene
captured with low IS0 ~ this type of image is often used as
ground truth for (a); () ground truth estimated by [ ]: (d)
our ground truth. Noise estimates () and ; for noise level
function and o for Gaussian noise - see Section 1.2) indi-
cate that our ground truth has significantly less noise than
both (b) and (c). Images shown are processed in raw-RGB,
while SRGB images are shown here to aid visualization.

(d) Our ground truth

dataset is essential both to focus atiention on denoising of

SIDD: Smartphone Image
Denoising Dataset

-30,000 images

-5 cameras

-160 scene instances
-15 1SO settings
-Direct current lighting
-Three illuminations

Interesting finding

- When trained on synthetic only, BM3D beat DnCNN
-When trained on real data, DnCNN wins

- Implies noise models in literature are not accurate

14
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Abdelhamed et al CVPR 2018

Abdelrahman Abdelhamed
York University

Abstract

The last decade has seen an astronomical shift from
imaging with DSLR and point-and-shoot cameras to imag.
» the small aperture

ing with smartphone cameras. Du
and sensor vize, smartphone images have notably more
noise than their DSLR counterparts. While denoising for
smartphone images is an active research area, the research

We address this issue in

"
this paper with the Jolowing conributions. We propose a

systematic procedure for estimating ground truth for noivy

L
have captured a dataset - the Smarphone Image Denoising
Dataset (SIDD) ~ of ~30.000 noisy images from 10 scenes
wnder different lighting conditions using five representative

rated their ground truth im
benchmark a number of de
w that CNN-based methods per

noising algorithms We
form better when tra
when trained using alternative strategies, such as low-1SO

od on our high-quality dataset than

images used ax a proxy for ground truth data

Abdelrahman Abdelhamed etc. 2018

Stephen Lin
Microsoft Research

A High-Quality Denoising Dataset for Smartphone Cameras

Michael S. Brown
York University

IS0 image (150 100)

() Ground truth wsing | ] () Our ground truth

Figure 1: An example scene imaged with an LG G4 smart
phone camera: (a) & high-1S0 b

captured with low 1SO - this type
ground truth for (a); () ground t

ed by [°]; (d)
our ground truth. Noise estimates (9; and 7; for noise level
function and  for Gaussian noise - see Section 1.2) indi
cate that our ground truth has significantly less noise than
both (b) and (c). Images shown are processed in raw-RGB,
while SRGB images are shown here to aid visualization.

dataset is essential both to focus attention on denoising of

‘iPhone, 1SO 100, Normal Light 5500K

Pixel, 1SO 1600, Normal Light 4400K Galaxy, 1SO 1600, Normal Light 5500K

G4, IS0 800, Low Light 3200K

Figure 2: Examples of noisy images from our SIDD dataset
captured under different lighting conditions and camera set-
tings. Below each scene, zoomed-in regions from both the
noisy image and our estimated ground truth (Section 4) are
provided.

17
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Defective pixel Outlier image Intensity Dense local image Robust mean image St
correction removal alignment alignment estimation utput:
Input: . . . ’ . . . . . . . ’ . ‘ ground truth
sequence of Robust outlier detection Outlier Intensity mean- Sub-pixel FFT registration Censored regression image
images Bicubic interpolation detection shifting Thin-plate spline warping WLS fitting of CDF
Section 4.1 Section 4.2 Section 4.2 Section 4.3 Section 4.4

Figure 3: A block diagram illustrating the main steps in our procedure for ground truth image estimation. The respective
sections for each step are shown.

Abdelrahman Abdelhamed etc. 2018 19
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Defective pixel
correction

(a) Low-light noisy image  (b) Zoom-in region from (a)
Robust outlier detection
Bicubic interpolation

(c) Mean image with (d) Our ground truth with
defective pixels defective pixels corrected

Abdelrahman Abdelhamed etc. 2018



] SIDD: BEMNREXNFESIEKREAN=EXNFREIE

[ Y [ Y 3 1 3 A LTRERe S A
HEHEBEEERBEB oA
DEEDEAEE BN

D EERE@EE@E  |oeeiiiiii

0 e O s e I s O s

D0 00O EEO

0 5 10 1‘5
(@) Part of fiducial pattern imaged 500
times by each camera on a vibration-

controlled platform. Apple iPhone 7

Intensity
alignment

Intensity mean-
shifting

20

(b) Local translations (image #500/500)
Max. translation = 2.35 pixels

»

Section 4.2

Abdelrahman Abdelhamed etc. 2018

20

Max. translation = 4.4 pixels
Google Pixel

—+— Global alignment
—— Local alignment

0 5 10 15 20 25 0.1 02 03 06 10 1.8
(c) Local translations (image #500/500)

B1(x107%)

Dense local image
alignment

Sub-pixel FFT registration
Thin-plate spline warping

Section 4.3

21
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x10#
4 102
——Mean After Clipping | ——Mean After Clipping
~——MLE + Censoring | —MLE + Censoring
3 ——WLS + Censoring i ——WLS + Censoring
Mean Before Clipping I Mean Before Clipping
-4 |
w w 107
02 %) f
= =
gt
106
0
0 75 150 225 300 10 103 1072 107!
(a) # Images (b) i

Robust mean image
estimation

Censored regression
WLS fitting of CDF

Section 4.4
Abdelrahman Abdelhamed etc. 2018
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Learning to See in the Dark

Chen Chen Qifeng Chen Jia Xu Vladlen Koltun
UIuC Intel Labs Intel Labs Intel Labs

(a) Camera output with ISO 8,000 (b) Camera output with ISO 409,600 (c) Our result from the raw data of (a)

Figure 1. Extreme low-light imaging with a convolutional network. Dark indoor environment. The illuminance at the camera is < 0.1

lux. The Sony 78 II sensor is exposed for 1/30 second. (a) Image produced by the camera with ISO 8,000. (b) Image produced by the

camera with ISO 409,600. The image suffers from noise and color bias. (c) Image produced by our convolutional network applied to the
raw sensor data from (a).

WA KA | IR

G 75 ) PR
{554 L BEAE R £ I S

TR e = 1 AR

Chen Chen, 2018
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42475515 R {

HBANENBEN
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=ENITR

R
BEYSRT
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ETMIRIKKBIEER, FHEARAWBIAR
XS RZHISRGBIB T

BT REBXEGYNSHIERACER, 545094
3K

0.2Lux ~ 5 Lux, BXTEHT T
0.03Lux~0.3Lux, KTH2¥, {URBIFEME5M
)4

1/30s ~ 1/10s

100f5Z3001&Rf <, £910s ~ 30s
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Sony a7SII  Filter array  Exposure time (s)  # images

x300 Bayer 1/10, 1/30 1190
x250 Bayer 1725 699
x100 Bayer 1/10 808
Fujifilm X-T2  Filter array  Exposure time (s) # images
x300 X-Trans 1730 630
x250 X-Trans 1725 650
x100 X-Trans 1/10 1117

Table 1. The See-in-the-Dark (SID) dataset contains 5094 raw
short-exposure images, each with a reference long-exposure im-
age. The images were collected by two cameras (top and bottom).
From left to right: ratio of exposure times between input and refer-
ence images, filter array, exposure time of input image, and num-
ber of images in each condition.

Chen Chen, 2018

il ‘-‘Mi'\ i

Figure 2. Example images in the SID dataset. Outdoor images
in the top two rows, indoor images in the bottom rows. Long-
exposure reference (ground truth) images are shown in front.
Short-exposure input images (essentially black) are shown in the
back. The illuminance at the camera is generally between 0.2 and
5 lux outdoors and between 0.03 and 0.3 lux indoors.

21
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Chen Chen, 2018
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Practical Deep Raw Image Denoising
on Mobile Devices

Yuzhi Wang!-2, Haibin Huang?, Qin Xu?, Jiaming Liu?, Yiqun Liu', and Jue
Wang?

! Tsinghua University
2 Megvii Technology

Yuzhi Wang, 2020
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Practical Deep Raw Image Denoising

on Mobile Devices

Yuzhi Wang!-2, Haibin Huang?, Qin Xu?, Jiaming Liu?, Yiqun Liu!, and Jue

JEEBURE Y LA Ve s ) =
{50k b ) T AR R4

Wang?

! Tsinghua University
2 Megvii Technology
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photon-voltage Analog
convertion amplification
S .. __. . electrons I I voltage voltage
- i. >
photons . - - | I U
Quantum  Dark noise = Analog gain
efficiency

Analog-digital
convertion

p
Read and

quantization noise

-rl.l'rr value
> U

Yuzhi Wang, 2020
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Yuzhi Wang, 2020

1288 7%

EMVA Standard Compliant

EMVA Standard 1288

Standard for Characterization of Image
Sensors and Cameras

Release 3.0
November 29, 2010

Issued by
European Machine Vision Association
WWW.Eemva.org
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Burst Samples with Noise

Mean Image

(a) Noise Sampling

o()?=t-(a-®+D) g>+0%y=EWDg+ 2y,

Yuzhi Wang, 2020

AR ERBAVHE A HERERE

O
30
" QO o
Q'..G"-O
06 ©
o0 var(z|z* = z2)
0.5
06
6
var(z|z* = x1)

(c) Param Estimation
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Fig. 6: Noise param estimation of Reno-10x smartphone: (a) parameter estima-

600

(oAl
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(=}
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400

300 +

200 A

Variance on burst samples

—

=2

(=}
1

—— Fitted values —— Fitted values

o Measured values © Measured Values

0

301

—— Fitted values
@ Measured Values

50 100 150 200 100 1600 3200
Raw value on mean image 1SO

(a) (b)

4800

6400

100 1600 3200 4800
ISO

(c)

tion at ISO-4800 (b) k values at different ISOs (c) o2 at differnt ISOs.

Yuzhi Wang, 2020

o(?=t-(a-®+D) -g?+02q=EWDg + 02y,

6400
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Yuzhi Wang, 2020
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Burst Samples with Noise
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(a) Noise Sampling (b) Noise Statistics (c) Param Estimation

Fig. 3: Noise parameter estimation with a burst series of raw images of a static
grayscale chart.

600 4 = 1 L
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Fig. 6: Noise param estimation of Reno-10x smartphone: (a) parameter estima-
tion at ISO-4800 (b) k values at different ISOs (c) o2 at differnt ISOs.

Yuzhi Wang, 2020
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